

A method for detection for all three naturally occurring radon

Amos Vincent Ntarisa, H.J. Kim*, Pabitra Aryal, Nguyen Duy Quang

Department of Physics, Kyungpook National University, Daegu, 41566, Republic of Korea

*Corresponding Author, Email: hongjoo@knu.ac.kr

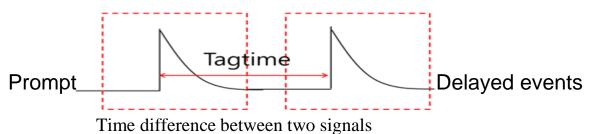
The LSC2020 conference, Advance in liquid Scintillation Spectrometry, October 18th-20th October, 2021 - Shenzhen Technology University, Laser Fusion Research Center, China.

Co - 60

Na - 22

Introduction

- * Radon is the most important source of ionizing radiation which poses human health risks especial lung cancer after smoking.
- ❖ We are developing a technique for determining radon based on Liquid Scintillation Counting (LSC) technique with photomultiplier tube (PMT) using delayed coincidence technique (DCT) and Pulsed Shape Discrimination (PSD) method implemented by Digital Charge Comparison (DCC).
- This technique can be used to detect all three isotopes of radon found in nature (222Rn, 220Rn and 219Rn) which are the product of a natural decay series of Uranium (238U), Thorium (232Th) and Actinium (235U), respectively. The target isotopes are shown in Table-1


Table-1:Summary of target isotopes

	rable 1.5ammary of target 150topes			
	²³⁸ U family	²³⁵ U family	²³² Th family	
Mother isotope	²¹⁴ Bi	²¹⁹ Rn	²¹² Bi	
	<i>Q</i> ₆ = 3.27MeV	Q_{α} = 6.95 MeV	<i>Q</i> _β = 2.25 MeV	
	$T_{1/2}$ = 20 min	$T_{1/2} = 3.97 \mathrm{min}$	$T_{1/2}$ = 60.55 min	
Daughter	²¹⁴ Po	²¹⁵ Po	²¹² Po	
	Q_{α} = 7.83 MeV	Q_{α} = 7.53 MeV	$Q_{\alpha} = 8.95 \mathrm{MeV}$	
	$T_{1/2}$ = 164 \mu s	$T_{1/2}$ = 1.78 ms	$T_{1/2} = 0.299 \mu s$	
Granddaughter	²¹⁰ Pb	²¹¹ Pb	²⁰⁸ Pb	

Neutron Tagging Module (NGT400)

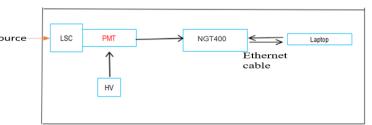
- ❖ NGT400 tags neutron signal from a liquid scintillation detector by utilizing digital pulse shape discrimination(PSD) implemented by digital charge comparison (DCC) method.
- ❖ NGT400 accepts an input pulse with width from 20 to 1270 ns.

Delayed Coincidence Technique (DCT)

- ❖ Tagtime between prompt and delayed events is time difference between two signals.
- For example, to select out 214 Po in 238 U decay chain, we set the time difference from 2μ s to 656μ s.
- The lower threshold of 2 μs in the time coincidence requirement adopted to reject the short 212 Bi- 212 Po coincidence in the 232 Th chain. This 2 μs is near about 7 half-lives of 212 Po.
- The upper limit was set as 656 μ s which is four half-lives of ²¹⁴Po.
- The cutting conditions on the same region of interest (ROI) covers selection efficiency (S.E) 99.3% of its alpha events distribution, 82.6% of beta events distribution and 99.2% of its decay function.

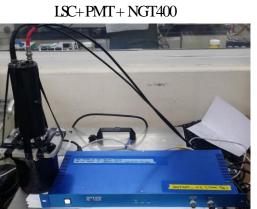
Materials

- ❖ We use Ultima Gold AB liquid scintillation cocktail which are designed for alpha/beta discrimination in liquid scintillation counting. It is an excellent sample which can holding both aqueous and acidic sample types. Ultima Gold AB(UG-AB)→700 mL
- Radon source -> from air -> 48 hrs -> feed to the 700 mLof UG-AB
- Sample container -> one liter of Stainless Steel (SUS) container with teflon coating inside.

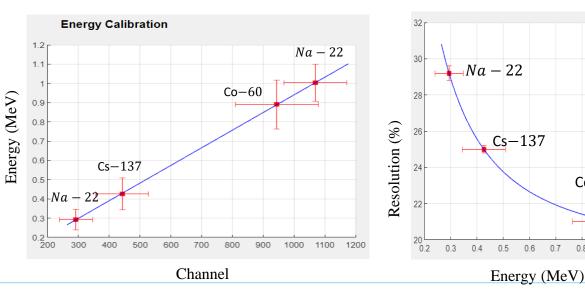

Schematic Diagram of Experimental Setup

- ❖ PMT→Hamamastu 7195
- \Leftrightarrow High voltage \rightarrow -1800 V
- **♦** DAQ→ngt400

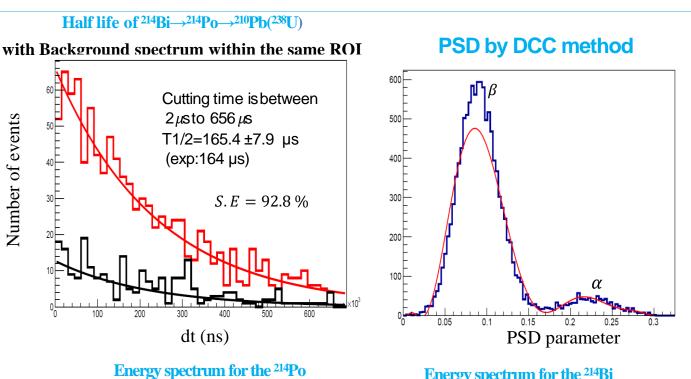
SUS container

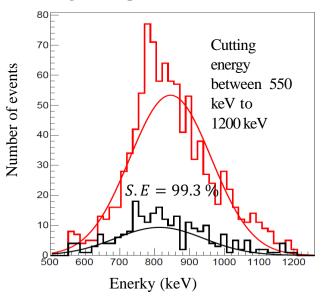

V=1.0 L

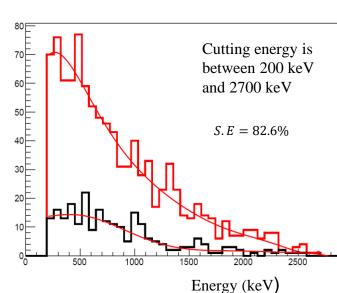
❖ PC→ Linux operation system with rootprogramming.


d = 2 mm Teflon + 2 mm SUS outside 5 mm glass window Test with 700mL UltimaGold AB

LSC detector with 5 cm Pb shielding



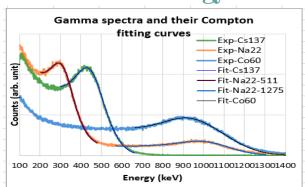

Energy Calibration and Energy Resolution

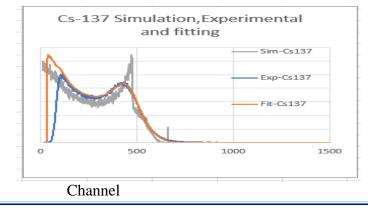


Results

Energy spectrum for the ²¹⁴Po Energy spectrum for the ²¹⁴Bi with Background spectrum within the same ROI with Background spectrum within the same ROI

Energy spectra of ²¹⁴Po (left) delayed and ²¹⁴Bi (right) prompt events selected by DCT method.


Detector Efficiency


	Cut	Efficiency(%)
Alpha Energy product from Po-214	E_{α} >550 <1200 keV & dt>2<656 µs	99.3
Beta Energy product from Bi-214	$E_{\beta} > 0 < 2500 \text{ keV}$	82.6
Half life of $^{214}\text{Bi} \rightarrow ^{214}\text{Po} \rightarrow ^{210}\text{Pb}(^{238}\text{U})$	dt>2<656 μs	92.8
Total Efficiency		76.1

Minimum Detectable Activity (MDA)

- * MDA of 3.2 mBq/L of 222Rn (222U decay chain) for 12.5 hours data taking was calculated by using Currie formula $MDA = \frac{2.71 + 4.65\sqrt{C_bT_b}}{e \times V_c \times T_c \times 60}$, where
- \bullet C_b is is the background count rate (cpm)
- \bullet T_b is the background counting time(min)
- \bullet ϵ is the counting efficiency, V_s is the sample Volume,
- \bullet T_s is the sample counting time(min) and
- ❖ The factor of 60 is used to express the MDA in terms of Bq

Energy Calibration with gamma sources

Summary and Future plan

- Ultima Gold AB (UG-AB) was used for the detection of radon decay product in 700 mLUG-AB sample in the one liter of SUS container.
- We measured half life of 214 Po to be $165.4\pm7.9~\mu$ s which is consistent with expected half-life of 164
- ❖ We found the total efficiency of the system of 76.1% for ²²²Rn (²³⁸U decay chain).
- ❖ We calculated the MDA of 3.2 mBq/L of ²²²Rn (²³⁸U decay chain).
- ❖ We will work on other target isotopes in order to calculate the efficiency and limit of the method for ²²⁰Rn (²³²Th decay chain) and ²¹⁹Rn (²³⁵U decay chain).